Whitep

ot Software
Supply Chain
Transparency

enabling broader SBOM adoption.

(®) SCANOSS

The Future of Software Supply Chain Transparency

Content

Background
Software Supply Chain Governance

Key Requirements for Effective Governance

1. Standardisation and Automation

2. Traceability and Integrity

3. Comprehensive Detection

4. Integration into Development Workflows

The Future of SBOM Tooling

Cl/CD Integration
Command-Line Interface (CLI)
SCANOSS Workbench

The Answer is Broad SBOM Adoption

Questions?

Please get in touch through www.scanoss.com

03

04

04

05
05
05
05

06

06
07
08

08

2/9

-uture of Software Supply Chain Transparency

Background

The software supply chain suffers from a persistent lack of transparency. Unlike
the hardware industry, which depends on standardised documentation across
suppliers, software has developed without a shared infrastructure for identifying
components, origins, or licensing. This oversight has introduced significant
security, legal, and operational risks.

The LOG4J vulnerability starkly exposed this weakness. The issue was not only
the flaw itself, but the widespread inability to determine which systems were
affected. This incident highlighted what many already suspected: without
visibility into the software we build and use, response efforts are slow,
fragmented, and costly.

In 2021, the urgency of this problem prompted the U.S. government to act.
Executive Order 14028 mandated the use of Software Bills of Materials (SBOMs)
to improve cybersecurity and transparency. Though issued in a national context,
the Order set a global precedent, reinforcing the need for standardised
approaches to software component tracking.

SBOMs now form the backbone of modern software governance. Standards such
as SPDX and CycloneDX are well established, but many organisations still
struggle to produce complete and accurate SBOMs—particularly when it comes
to the open source components that make up the majority of modern software.
Despite growing awareness, gaps remain in detection, coverage, and
consistency, making it difficult to gain a full picture of the software in use.

Developer Development Source Control Build Deploy

©) -

> Future of Software Supply Chain Transparency

Software Supply Chain Governance

Modern software is rarely built from scratch. It is assembled from external
components, often open source, maintained by diverse contributors across the
globe. These dependencies introduce hidden risks that can affect the inteqgrity
of the final product. Open source components generally fall into two categories:
declared and undeclared.

Declared open source includes components that are explicitly referenced in
metadata or dependency files, making them easier to identify and track.
Undeclared open source, by contrast, consists of copied or reused code
fragments, sometimes modified or stripped of licensing information, that are not
formally referenced. This type of code can enter a project unintentionally and go
undetected, yet still carries legal and security implications. If not properly
identified, undeclared code can compromise compliance, introduce unmitigated
vulnerabilities, and create uncertainty around the software’s provenance.

To manage this complexity, organisations require reliable inventories of the
components in their software. This is what SBOMs provide: structured data about
what software is built from, including versions, licences, and origins. A well-
integrated SBOM approach enables organisations to monitor compliance, trace
component lineage, and respond rapidly to emerging risks.

Effective governance depends on more than simply generating an SBOM. It

requires a standardised, automated, and auditable process for producing and
validating these inventories across all contributors in the supply chain.

Key Requirements for Effective Governance

Despite growing consensus around the importance of SBOMs, adoption remains
uneven. The following capabilities are essential for a scalable, inclusive SBOM
ecosystem:

@ 4/9

> Future of Software Supply Chain Transparency

1. Standardisation and Automation

Standardisation and automation are foundational to effective software supply
chain governance. Without consistent SBOM generation practices, it is
impossible to enforce policies, streamline risk evaluations, or conduct
meaningful audits. Governance begins by embedding standard formats, such as
SPDX and CycloneDX, and repeatable processes into the development lifecycle,
ensuring that every software package, regardless of its source, can be evaluated
against a common framework.

2. Traceability and Inteqgrity

SBOMs must not only describe the composition of a software package but also
be reliably linked to specific builds and versions. It should be possible to track an
SBOM through the software’s lifecycle, verifying that it has not been altered or
decoupled from its associated code. This traceability can be achieved through
digital signatures or decentralised technologies that provide audit trails,
reinforcing trust in the provenance of software artefacts.

3. Comprehensive Detection

A complete SBOM must account for both declared and undeclared components.
Developers may unintentionally introduce copied or modified open source code,
without declaring it or preserving licence information. This can result in
significant legal and compliance risks. Governance frameworks must therefore
support detection of all software origins, including reused or altered fragments
that may otherwise go unnoticed.

4. Integration into Development Workflows

To scale effectively, governance must integrate with modern software
development practices. Embedding compliance checks, SBOM generation, and
validation into continuous integration and deployment (Cl/CD) pipelines ensures
that governance becomes automatic and repeatable. This reduces manual
overhead while ensuring policies are enforced consistently, without disrupting
delivery speed or aqility.

©) -

ture of Software Supply Chain Transparency

The Future of SBOM Tooling

Despite growing awareness of SBOM standards, organisations continue to face
challenges in producing complete and verifiable software inventories—
particularly when it comes to detecting undeclared open source components.
Most tooling still focuses on declared dependencies, leaving out copied, reused,
or modified code that lacks formal attribution.

To address this gap, advanced Software Composition Analysis (SCA) must
operate at the snippet level, enabling identification of even partial or altered
source fragments. This requires a comprehensive and continually updated open
source knowledge base. SCANOSS addresses this need by maintaining the largest
snippet-level open source database publicly available, enabling accurate
detection of both declared and undeclared code across a wide range of
software ecosystems.

In practice, this allows development teams and compliance functions to
generate more complete SBOMs, critical for legal due diligence, risk assessments,
security reviews and quantum readiness. Whether analysing third-party code or
internally developed components, the ability to detect partial reuse or licensing
gaps ensures that no component goes unnoticed.

To accommodate diverse environments and maturity levels, SCANOSS provides
multiple access options:

Cl/CD Inteqgration

For organisations with mature DevSecOps practices, SCANOSS integrates directly
into CI/CD pipelines to generate SBOMs as part of automated builds.

Use case: A DevSecOps team wants to ensure that every software release
includes a traceable SBOM, generated at build time.

How it works: The SCANOSS engine is triggered during builds in systems like

GitHub Actions, GitLab CIl, Jenkins, or Azure DevOps. The output can be stored,
validated, or published automatically.

©) o

The Future of Software Supply Chain Transparency

Command-Line Interface (CLI)

The SCANOSS CLI provides developers and security teams with direct, scriptable
access to SBOM generation from the terminal.

Use case: A developer wants to check for open source issues before committing
code, or a security engineer needs to audit a codebase manually.

How it works: You install a CLI tool (like scanoss-py) and run commands locally,
such as scanoss scan to generate an SBOM or check for licensing issues.

Unit
Testing

: Plan
2L —> (Stories)

Smoke/
Component
Testing

- {\
o
Non-Funcional Rest Data F““Ge‘}‘ee
(Security, perfomance) Management ne-®

Continous
Monitoring Delivery

@ 7/

iture of Software Supply Chain Transparency

SCANOSS Workbench

The SCANOSS Workbench is a cross-platform desktop application designed for
teams needing an accessible, preconfigured tool to scan source code and
generate SBOMs locally.

Use case: A procurement or legal team asks a supplier to submit an SBOM with
their deliverable. Instead of performing a manual review, the supplier can
generate a compliant, standardised SBOM using a prepackaged Workbench.

How it works: The tool can be rebranded and preconfigured with specific
knowledge bases or APl keys. Suppliers or internal teams simply run it on their
computer, no infrastructure or scripting required.

Regardless of how an SBOM is generated, traceability and inteqgrity are critical.
SBOMs must remain linked to specific builds and verifiable throughout the
software lifecycle.

Together, these capabilities ensure that high-quality SBOMs can be generated at
any stage of development or procurement, supporting compliance,
transparency, and trust throughout the supply chain.

The Answer is Broad SBOM Adoption

Having SBOM standards in place, like SPDX and CycloneDX, and even an
International Standard for Open Source License Compliance (ISO/IEC 5230) by the
OpenChain, what remains is to stimulate broad SBOM adoption.

SCANOSS brings an end to decades of costly SCA tools which imposed vendor
lock-in mechanisms to software composition data exchange. SMEs and
independent developers, a key part of the Software Supply Chain, now have
access to leading edge tooling which facilitates software composition, data
analysis and exchange. This lowers risks and expenses and finally brings
absolute transparency to the Software Supply Chain.

@ 8/9

The information in this paper is provided “as is”, without warranty of any kind,
express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no
event shall Scan Open Source Solutions SL. be liable for any claim, damages or
other liability, whether in an action of contract, tort or otherwise, arising from,
out of or in connection with the information hereby provided. Subject to
changes and errors. The information given in this document contains only
general descriptions and/or performance features which may not always
specifically reflect those described, or which may undergo modification in the
course of further development of the products. The requested features and
their performance are binding only when they are expressly agreed upon in the
concluded contract.

Published on 2025-06-25 by SCANOSS.com

(®) scANOsS

