Whitepaper

Standardising
Open Source
INnventorying

The first Open Source Inventory Engine built for
developers & modern DevSecOps teams.

Standardising Open Source Inventorying

Content

Background 03
Redefining Software Composition Analysis 03
Open-by-Design Platform 04
Architecture 04
Transparent Fingerprinting with Winnowing 05
The SCANOSS Database Engine: Idb 06
Inventory Engine and Continuous SBOM 06
Automating with the RESTful APl and Webhooks 07
Developer Tooling: scanner.py CLI 07
Custom Knowledge Base with minr 08
Open, Transparent, Continuous 0SS Governance 08

Questions?

Please get in touch through www.scanoss.com

©), "

https://www.scanoss.com

sng Open Source Inventorying

Background

Software Composition Analysis (SCA) tools are widely used to identify and
manage open source components within codebases. Yet, despite their
significant role in enabling 0SS compliance, most SCA vendors have resisted the
very principles they claim to support, openness and transparency. Instead, they
offer closed, proprietary systems that create friction for developers and legal
teams alike. These tools are difficult to integrate, incompatible with modern CI/CD
workflows, and costly to maintain.

In an environment where software is built and deployed continuously, closed
systems are no longer sustainable. What is needed is a shift: away from black-
box auditing tools and towards developer-native, fully open infrastructure for
continuous 0SS inventorying.

Redefining Software Composition Analysis

Traditional SCA tools played a critical role in the early days of open source
adoption, particularly in generating SBOMs for legal due diligence, end-of-cycle
audits, and M&A processes. These tools helped establish baseline practices for
open source compliance. However, their architecture was rooted in static
development models.

Today, software is developed continuously and collaboratively. This shift
exposed the limitations of legacy SCA tools. SCANOSS reimagines SCA from first
principles. It introduces a platform that is fully open, standards-aligned, and
purpose-built for continuous, developer-centric 0SS compliance. Instead of
relying on closed tools that hide how code is identified and matched, SCANOSS
provides full transparency.

At the heart of SCANOSS is the principle of "always-on” compliance. The platform
allows teams to validate and inventory OSS components in real time, without
needing to pause development for manual audits. It is designed to work naturally
within modern DevSecOps pipelines, enabling proactive compliance rather than
reactive correction.

©), -

1g Open Source Inventorying

Open-by-Design Platform

Every component of the SCANOSS platform is open source and modular, allowing

organisations to deploy, customise, and extend their 0SS governance strateqy

with confidence:

« Open Data Mining Tool (‘minr’): Extracts, fingerprints and indexes 0SS and
proprietary source code.

« Open Database Engine (‘Idb’): Purpose-built for high-throughput fingerprint

matching at scale.

« Open Inventory Engine: The first fully open source inventory engine built for

developers.

« Open RESTful APIl: OpenAPI-compliant interface for integration with ClI/CD
tools.

« Open Webhook: Enables automated scans on Git events like push or pull
request.

« Open CLI Scanner (‘scanner.py’): A Python-based command line tool for local

and scripted validation.

Architecture

The backbone of SCANQOSS is its OpenAPIl-compliant RESTful API, which provides a
rich set of endpoints for real-time source code inventorying, SBOM management,

project provisioning, user management, and audit control. CI/CD systems and

custom tools can interact with the inventory engine seamlessly through HTTPS,

using simple JSON-based workflows.

The Inventory Engine operates at low latency by querying the underlying Idb
database, which is optimised specifically for fingerprint lookups. SBOMs are
generated using SPDX and CycloneDX standards (JSON and XML formats

supported), ensuring compatibility with requlatory frameworks and third-party

systems.

©,

4/9

https://github.com/scanoss/minr
https://github.com/scanoss/ldb
https://github.com/scanoss/engine
https://github.com/scanoss/scanoss.py

Standardising Open Source Inventorying

MINING SOURCES CURATION
m MINING SERVER DATA VALIDATION
oem i
_ Maven | b | —

l CLIENT
SCANOSS SERVER Cl/CD
CLIS/PACKAGES
SCANOSS KB Jenkins
(——————% INPUT
Licenses Code Fingerprints

SCANOSS Engine Encryption (hashes) m

OUTPUT

Scan Results

AUDITING PLATFORM

SBOM Workbench

o

Transparent Fingerprinting with Winnowing

One of the major pain points in the current SCA landscape is the lack of
standardisation in snippet detection. Most SCA vendors rely on proprietary
fingerprinting techniques, which makes it nearly impossible to compare results
across tools and raises concerns around transparency and vendor lock-in. In
many cases, these tools require sensitive source code to be processed through
closed binaries, creating avoidable security and compliance risks.

SCANOSS addresses this challenge by adopting the academically recognised
Winnowing algorithm for snippet fingerprinting—a method long used in
plagiarism detection and source similarity analysis. This approach is
reproducible, well-understood, and available through multiple open source
implementations. SCANOSS has adapted Winnowing for indexing and comparing
massive volumes of source code while preserving transparency, auditability, and
developer trust.

https://qgithub.com/scanoss/wfp

@ 5/9

https://github.com/scanoss/wfp

ndardising Open Source Inventorying

The SCANOSS Database Engine: Idb

Traditional SQL and NoSQL databases struggle with the scale and speed needed
for SCA tasks, where each file scan may involve thousands of quick, repetitive
queries. Their complexity creates performance bottlenecks and unnecessary
overhead.

To address this, SCANOSS developed 1db, a custom-built data engine optimised
exclusively for OSS fingerprint matching. The engine uses a mapped linked-list
structure with numeric keys, drastically reducing lookup times and keeping the
memory footprint minimal. It is capable of distributing its data model across
machines and has already indexed over 3 trillion fingerprints, enabling
microsecond-level response times for even the largest codebases.

Mapped linked-list architecture

Over & trillion fingerprints indexed
Microsecond-level response times
Distributed and memory-efficient

https://github.com/scanoss/ldb

Inventory Engine and Continuous SBOM

The Inventory Engine compares source code (or Winnowing fingerprints) against
the SCANOSS Knowledge Base. It produces JSON-formatted outputs that include
metadata such as matched components, licences, snippet hashes, and URLs.

Optimised for low-latency processing, the engine can run locally or as part of a
shared infrastructure. It is designed for real-time operation, enabling SBOMs to
be generated incrementally and continuously throughout the development
lifecycle.

https://github.com/scanoss/engine

©), o

https://github.com/scanoss/ldb
https://github.com/scanoss/engine

Standardising Open Source Inventorying

Automating with the RESTful APl and Webhooks

To support high-velocity environments, SCANOSS provides an open RESTTul API
and a pre-built Webhook server. These components enable automated inventory
checks triggered by Git operations such as push or pull request.

When code is pushed to the repository, the SCANOSS Webhook retrieves
modified files and optionally validates them against declared open source
assets. The results are posted back to the repository as build status updates
and comment badges. If undeclared 0SS components or code snippets are
found, the commit is flagged as failed. This tight integration turns 0SS
compliance into a lightweight and automated process, rather than a bottleneck
at release time.

https://qgithub.com/scanoss/API
https://github.com/scanoss/webhook

Developer Tooling: scanner.py CLI

For developers preferring on-demand validation or scripting workflows, SCANOSS
offers scanner.py, a lightweight Python CLI tool. It recursively scans a
directory, generates fingerprints, and returns detailed component metadata.
Ideal for use in:

« Local development environments

« Git hooks and pre-merge checks
« Container build pipelines

https://github.com/scanoss/scanoss.py

@ 7/9

https://github.com/scanoss/API
https://github.com/scanoss/webhook
https://github.com/scanoss/scanoss.py

SCANOSS: Standardising Open Source Inventorying

Custom Knowledge Bases with minr

Beyond consuming the SCANOSS Knowledge Base, organisations can build their
own using minr. This CLI tool allows users to download source code, extract
metadata, and generate fingerprint indexes for custom OSS or proprietary
components. These custom knowledge bases can be used to:

« Detect internal IP leakage
- Validate against curated lists of 0SS

« Conduct comparative research on licensing risks

Minr operates in parallel across machines and instances and its data output is
portable and scalable across devices.

https://qgithub.com/scanoss/minr

Open, Transparent, Continuous 0SS
Governance

SCANOSS marks a fundamental shift in how 0SS compliance is approached. By
replacing opaque, proprietary systems with open, developer-centric tools,
SCANOSS empowers organisations to manage software supply chain risks
proactively, efficiently, and transparently.

Whether you’re a DevOps engineer, a security lead, or a legal advisor, SCANOSS

offers an adaptable toolkit that fits into your existing workflows. It is open,
auditable, scalable and ready for the realities of modern software development.

https://qgithub.com/scanoss

@ 8/9

https://github.com/scanoss/minr

The information in this paper is provided *as is”, without warranty of any kind,
express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no
event shall Scan Open Source Solutions SL. be liable for any claim, damages or
other liability, whether in an action of contract, tort or otherwise, arising from,
out of or in connection with the information hereby provided. Subject to
changes and errors. The information given in this document contains only
general descriptions and/or performance features which may not always
specifically reflect those described, or which may undergo modification in the
course of further development of the products. The requested features and
their performance are binding only when they are expressly agreed upon in the
concluded contract.

Published on 2025-06-25 by SCANOSS.com

(@) scANOsS

https://www.scanoss.com
mailto:info@scanoss.com
https://www.scanoss.com

