
Open sSource
INnventorying
The first built for

developers & modern DevSecOps teams.

®) scANoss

Standardising Open Source Inventorying

Content

Background 03

Redefining Software Composition Analysis 03

Open-by-Design Platform 04

Architecture 04

Transparent Fingerprinting with Winnowing 05

The SCANOSS Database Engine: Idb 06

Inventory Engine and Continuous SBOM 06

Automating with the RESTful APl and Webhooks 07

Developer Tooling: scanner.py CLI 07

Custom Knowledge Base with minr 08

Open, Transparent, Continuous 0SS Governance 08

Questions?

Please get in touch through www.scanoss.com

@ 2/9

Standardisng Open Source Inventorying

Background

Software Composition Analysis (SCA) tools are widely used to identify and

manage open source components within codebases. Yet, despite their

significant role in enabling 0SS compliance, most SCA vendors have resisted the

very principles they claim to support, openness and transparency. Instead, they

offer closed, proprietary systems that create friction for developers and legal

teams alike. These tools are difficult to integrate, incompatible with modern CI/CD

workflows, and costly to maintain.

In an environment where software is built and deployed continuously, closed

systems are no longer sustainable. What is needed is a shift: away from black-

box auditing tools and towards developer-native, fully open infrastructure for

continuous 0SS inventorying.

Redefining Software Composition Analysis

Traditional SCA tools played a critical role in the early days of open source

adoption, particularly in generating SBOMs for legal due diligence, end-of-cycle

audits, and M&A processes. These tools helped establish baseline practices for

open source compliance. However, their architecture was rooted in static

development models.

Today, software is developed continuously and collaboratively. This shift

exposed the limitations of legacy SCA tools. SCANOSS reimagines SCA from first

principles. It introduces a platform that is fully open, standards-aligned, and

purpose-built for continuous, developer-centric 0SS compliance. Instead of

relying on closed tools that hide how code is identified and matched, SCANOSS

provides full transparencuy.

At the heart of SCANOSS is the principle of "always-on” compliance. The platform

allows teams to validate and inventory OSS components in real time, without

needing to pause development for manual audits. It is designed to work naturally

within modern DevSecOps pipelines, enabling proactive compliance rather than

reactive correction.

@ 3/9

Standardising Open Source Inventorying

Open-by-Design Platform

Every component of the SCANOSS platform is open source and modular, allowing

organisations to deploy, customise, and extend their 0SS governance strategy

with confidence:

« Open Data Mining Tool (‘minr’): Extracts, fingerprints and indexes 0SS and

proprietary source code.

« Open Database Engine (‘Idb"): Purpose-built for high-throughput fingerprint

matching at scale.

« Open Inventory Engine: The first fully open source inventory engine built for

developers.

« Open RESTful API: OpenAPIl-compliant interface for integration with ClI/CD

tools.

« Open Webhook: Enables automated scans on Git events like push or pull

request.

« Open CLI Scanner (‘scanner.py’): A Python-based command line tool for local

and scripted validation.

Architecture

The backbone of SCANOSS is its OpenAPI-compliant RESTful API, which provides a

rich set of endpoints for real-time source code inventorying, SBOM management,

project provisioning, user management, and audit control. CI/CD systems and

custom tools can interact with the inventory engine seamlessly through HTTPS,

using simple JSON-based workflows.

The Inventory Engine operates at low latency by querying the underlying Idb

database, which is optimised specifically for fingerprint lookups. SBOMs are

generated using SPDX and CycloneDX standards (JSON and XML formats

supported), ensuring compatibility with requlatory frameworks and third-party

systems.

@ 4/9

Standardising Open Source Inventorying

MINING SOURCES CURATION

" MINING SERVER DATA VALIDATION

_rem __mine | Automation |
LLm

b

worel |

J CLIENT
SCANOSS SERVER —

CLIS/PACKAGES

SCANOSS KB
o " INPUT .

censes Gode Fingerprints
" (hashes) .

SCANOSS Engine Encryption Woret]

Security

- OTHER

OUTPUT
e Soan Results GULIINGIEEATOR

SBOM Workbench

Transparent Fingerprinting with Winnowing

One of the major pain points in the current SCA landscape is the lack of

standardisation in snippet detection. Most SCA vendors rely on proprietary

fingerprinting techniques, which makes it nearly impossible to compare results

across tools and raises concerns around transparency and vendor lock-in. In

many cases, these tools require sensitive source code to be processed through

closed binaries, creating avoidable security and compliance risks.

SCANQOSS addresses this challenge by adopting the academically recognised

Winnowing algorithm for snippet fingerprinting—a method long used in

plagiarism detection and source similarity analysis. This approach is

reproducible, well-understood, and available through multiple open source

implementations. SCANOSS has adapted Winnowing for indexing and comparing

massive volumes of source code while preserving transparency, auditability, and

developer trust.

https://qgithub.com/scanoss/wfp

@ 5/9

Standardising Open Source Inventorying

The SCANOSS Database Engine: Idb

Traditional SQL and NoSQL databases struggle with the scale and speed needed

for SCA tasks, where each file scan may involve thousands of quick, repetitive

queries. Their complexity creates performance bottlenecks and unnecessary

overhead.

To address this, SCANOSS developed 1db, a custom-built data engine optimised

exclusively for 0SS fingerprint matching. The engine uses a mapped linked-list

structure with numeric keys, drastically reducing lookup times and keeping the

memory footprint minimal. It is capable of distributing its data model across

machines and has already indexed over 3 trillion fingerprints, enabling

microsecond-level response times for even the largest codebases.

Mapped linked-list architecture

« Over 3 trillion fingerprints indexed

« Microsecond-level response times

Distributed and memory-efficient

https://qithub.com/scanoss/Idb

Inventory Engine and Continuous SBOM

The Inventory Engine compares source code (or Winnowing fingerprints) against

the SCANOSS Knowledge Base. It produces JSON-formatted outputs that include

metadata such as matched components, licences, snippet hashes, and URLs.

Optimised for low-latency processing, the engine can run locally or as part of a

shared infrastructure. It is designed for real-time operation, enabling SBOMs to

be generated incrementally and continuously throughout the development

lifecycle.

https://github.com/scanoss/engine

@ 6/9

Standardising Open Source Inventorying

Automating with the RESTful APl and Webhooks

To support high-velocity environments, SCANOSS provides an open RESTful API

and a pre-built Webhook server. These components enable automated inventory

checks triggered by Git operations such as push or pull request.

When code is pushed to the repository, the SCANOSS Webhook retrieves

modified files and optionally validates them against declared open source

assets. The results are posted back to the repository as build status updates

and comment badges. If undeclared 0SS components or code snippets are

found, the commit is flagged as failed. This tight integration turns 0SS

compliance into a lightweight and automated process, rather than a bottleneck

at release time.

https://qgithub.com/scanoss/API

https://qithub.com/scanoss/webhook

Developer Tooling: scanner.py CLI

For developers preferring on-demand validation or scripting workflows, SCANOSS

offers scanner.py, a lightweight Python CLI tool. It recursively scans a

directory, generates fingerprints, and returns detailed component metadata.

Ideal for use in:

- Local development environments

« Git hooks and pre-merge checks

. Container build pipelines

https://qithub.com/scanoss/scanoss.py

@ 7/9

SCANQOSS: Standardising Open Source Inventorying

Custom Knowledge Bases with minr

Beyond consuming the SCANOSS Knowledge Base, organisations can build their

own using minr. This CLI tool allows users to download source code, extract

metadata, and generate fingerprint indexes for custom 0SS or proprietary

components. These custom knowledge bases can be used to:

« Detect internal IP leakage

- Validate against curated lists of 0SS

. Conduct comparative research on licensing risks

Minr operates in parallel across machines and instances and its data output is

portable and scalable across devices.

https://qgithub.com/scanoss/minr

Open, Transparent, Continuous 0SS
Governance

SCANOSS marks a fundamental shift in how 0SS compliance is approached. By

replacing opaque, proprietary systems with open, developer-centric tools,

SCANOSS empowers organisations to manage software supply chain risks

proactively, efficiently, and transparently.

Whether you’re a DevOps engineer, a security lead, or a legal advisor, SCANOSS

offers an adaptable toolkit that fits into your existing workflows. It is open,

auditable, scalable and ready for the realities of modern software development.

https://qgithub.com/scanoss

@ 8/9

Get involved

The SCANOSS Platform is made entirely available as open source. The

collaboration guidelines are available in the source code tree. Questions and

suggestions are welcome at

Get in touch

SCANQOSS offers commercial agreements with access to its complete Knowledge

Base, additional features and Service Level Agreements.

Please contact for further information.

The information in this paper is provided ”as is”, without warranty of any kind,

express or implied, including but not limited to the warranties of

merchantability, fitness for a particular purpose and noninfringement. In no

event shall Scan Open Source Solutions SL. be liable for any claim, damages or

other liability, whether in an action of contract, tort or otherwise, arising from,

out of or in connection with the information hereby provided. Subject to

changes and errors. The information given in this document contains only

general descriptions and/or performance features which may not always

specifically reflect those described, or which may undergo modification in the

course of further development of the products. The requested features and

their performance are binding only when they are expressly agreed upon in the

concluded contract.

Published on 2025-06-25 by

®) scan

